Enhanced photoelectrochemical water splitting performance using morphology-controlled BiVO4 with W doping

نویسندگان

  • Xin Zhao
  • Zhong Chen
چکیده

Nanostructures exhibit numerous merits to improve the efficiency in solar-to-energy conversion. These include shortened carrier collection pathways, an increased volume ratio between depletion layer and bulk, enhanced light capture due to multiple light scattering in nanostructures, and a high surface area for photochemical conversion reactions. In this study, we describe the synthesis of morphology-controlled W-doped BiVO4 by simply tuning the solvent ratio in precursor solutions. Planar and porous W-doped BiVO4 thin films were prepared and compared. The porous film, which exhibits increased surface area and enhanced light absorption, has displayed enhanced charge separation and interfacial charge injection. Our quantitative analysis showed an enhancement of about 50% of the photoelectrochemical performance for the porous structure compared to the planar structure. This enhancement is attributed to improved light absorption (13% increase), charge separation (14% increase), and interfacial charge injection (20% increase).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasmonic Pd Nanoparticle- and Plasmonic Pd Nanorod-Decorated BiVO4 Electrodes with Enhanced Photoelectrochemical Water Splitting Efficiency Across Visible-NIR Region

The photoelectrochemical (PEC) water splitting performance of BiVO4 is partially hindered by insufficient photoresponse in the spectral region with energy below the band gap. Here, we demonstrate that the PEC water splitting efficiency of BiVO4 electrodes can be effectively enhanced by decorating Pd nanoparticles (NPs) and nanorods (NRs). The results indicate that the Pd NPs and NRs with differ...

متن کامل

Electrosprayed heterojunction WO3/BiVO4 films with nanotextured pillar structure for enhanced photoelectrochemical water splitting

Articles you may be interested in Carbon quantum dots coated BiVO4 inverse opals for enhanced photoelectrochemical hydrogen generation Appl. Electrochemical deposition of iron sulfide thin films and heterojunction diodes with zinc oxide Photoelectrochemical water splitting at titanium dioxide nanotubes coated with tungsten trioxide Appl.

متن کامل

Photocharged BiVO4 photoanodes for improved solar water splitting

Bismuth vanadate (BiVO4) is a promising semiconductor material for the production of solar fuels via photoelectrochemical water splitting, however, it suffers from substantial recombination losses that limit its performance to well below its theoretical maximum. Here we demonstrate for the first time that the photoelectrochemical (PEC) performance of BiVO4 photoanodes can be dramatically improv...

متن کامل

On the improvement of photoelectrochemical performance and finite element analysis of reduced graphene oxide–BiVO4 composite electrodes

Incorporation of thermally reduced graphene oxide (RG-O) into the metal oxide semiconductor BiVO4 improves its photoactivity by about three times for sulfite oxidation. The enhancement of photoactivity is attributed to reduced electron–hole recombination of BiVO4 using the RG-O as a conductive matrix in the composite photocatalyst. Photoelectrochemical behavior of the BiVO4 and RG-O/BiVO4 compo...

متن کامل

Factors in the Metal Doping of BiVO4 for Improved Photoelectrocatalytic Activity as Studied by Scanning Electrochemical Microscopy and First-Principles Density-Functional Calculation

The semiconductor properties important in the design of photocatalysts required for a photosynthetic system, e.g., a photoelectrochemical cell to split water to hydrogen and oxygen, have largely been taken to be the band gap energy, Eg, and the band-edge locations, Ec and Ev (usually with considerations of factors affecting stability). These affect the amount of solar energy absorbed in the mat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017